Inicio » BioFisioTerapia » Biofisioterapia, web abierta y participativa en terapias físicas o biológicas

Biofisioterapia, web abierta y participativa en terapias físicas o biológicas

La web esta abierta  a todos los profesionales interesados en colaborar, investigar, intercambiar y publicar temas sobre el conocimiento y desarrollo de terapias con base física o biológica. La transversalidad de los profesionales de la salud, físicos, biólogos, ingenieros, informáticos permite un mayor conocimiento de técnicas o tecnologías y su aplicación en el paciente para una mayor rapidez y eficacia en la curación.

Bibliografía sobre Mecanotransducción y  Fotobiomodulación:


  1. Chen CS, Tan J, and Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annual Review of Biomedical Engineering. 2004; 6: 275-302. doi: 10.1146/annurev.bioeng.6.040803.140040
  2. Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM and Tarnopolsky MA. Massage Therapy Attenuates Inflammatory Signaling After Exercise-Induced Muscle Damage. Sci Transl Med 2012;4 (119):119.
  3. DuFort C, Matthew J. Paszek and Valerie M. Weaver. Balancing forces:architectural control of Mechanotransduction. Nature Reviews Molecular Cell Biology 2011;12:308-319. doi:10.1038/nrm3112
  4. Geiger B, Spatz JP and Bershadsky AD. Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology. 2009;10:21-33. doi:10.1038/nrm2593
  5. Hahn C and Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology. 2009;10:53-62. doi:10.1038/nrm2596.
  6. Ingber D.E. Cellular tensegrity:defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science. 1993;104:613-627.
  7. Ingber D.E. Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science. 2003;116:1157-1173. doi:10.1242/jcs.00359
  8. Ingber D.E. Tensegrity II. Cell structure and hierarchical systems biology. Journal of Cell Science. 2003;116:1397-1408. doi:10.1242/jcs.00360
  9. Ingber DE. Cellular mechanotransduction:putting all the pieces together again. The FASEB Journal. 2006;20(7):811-827.
  10. Ingber DE. Tensegrity:the architectural basis of cellular Mechanotransduction. Annu. Rev. Physiol. 1997. 59:575–99
  11. Janmey Paul A. and Christopher A. McCulloch. Cell Mechanics:Integrating Cell Responses to Mechanical Stimuli.2007;9:1-34. doi:10.1146/annurev.bioeng.9.060906.151927
  12. Martin C. Neurosensory Mechanotransduction. Nature Reviews Molecular Cell Biology 2009;10:44-52. doi:10.1038/nrm2595
  13. Schwartz MA. Integrins and Extracellular Matrix in Mechanotransduction. Cold Spring Harb Perspect Biol. 2010; 2010;2:a005066. doi: 10.1101/cshperspect.a005066
  14. Stevens MM, George JH. Exploring and Engineering the Cell Surface Interface. SCIENCE. 2005, 310 (18):1135-1138
  15. Wang N, Tytell J.D. Ingber D.E. Mechanotransduction at a distance:mechanically coupling the extracellular matrix with the nucleus. Nature Reviews-Molecular Cell Biology. 2009;10:75. doi:10.1038/nrm2594
  16. Wang N, Tytell JD and Ingber DE. with the nucleus. Nature Reviews Molecular Cell Biology. 2009;10:75-82. doi:10.1038/nrm2594
  17. Wang, L, Mascher H, Psilander N, Blomstrand E and Sahlin k. Resistance exercise enhances the molecular signalling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol. 2011;111(5):1335–1344. doi: 10.1152/japplphysiol.00086.2011
  18. Wang, N., Butler, J.P., Ingber, D.E.:Mechanotransduction Across the Cell Surface and Through the Cytoskeleton. Science, 1993. 260:1124-1127.


    1. Mester E, Szende B, Tota JG. Effect of laser on hair growth of mice. Kiserl Orvostud. 1967;19:628–631.
    2. Mester E, Spiry T, Szende B, et al. Effect of laser rays on wound healing. Am J Surg. 1971;122:532–535. [PubMed]
    3. Mester E, Szende B, Spiry T, et al. Stimulation of wound healing by laser rays. Acta Chir Acad Sci Hung. 1972;13:315–324. [PubMed]
    4. Huang YY, Chen AC, Carroll JD, et al. Biphasic dose response in low level light therapy. Dose Response. 2009;7:358–383. [PMC free article] [PubMed]
    5. Aimbire F, Albertini R, Pacheco MT, et al. Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomed Laser Surg. 2006;24:33–37. [PubMed]
    6. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49:1–17. [PubMed]
    7. Passarella S, Casamassima E, Molinari S, et al. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 1984;175:95–99. [PubMed]
    8. Greco M, Guida G, Perlino E, et al. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem Biophys Res Commun. 1989;163:1428–1434. [PubMed]
    9. Karu T. Photobiology of low-power laser effects. Health Phys. 1989;56:691–704. [PubMed]
    10. Karu T. Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B. 1989;3:638–640. [PubMed]
    11. Wong-Riley MT, Liang HL, Eells JT, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280:4761–4771. [PubMed]
    12. Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B. 1995;27:219–223. [PubMed]
    13. Pastore D, Greco M, Petragallo VA, et al. Increase in ≤H+/e– ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser. Biochem Mol Biol Int. 1994;34:817–826. [PubMed]
    14. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005;23:355–361. [PubMed]
    15. Lohr NL, Keszler A, Pratt P, et al. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J Mol Cell Cardiol. 2009;47:256–263. [PubMed]
    16. Kam T, Kalendo G, Lethokov V. Lobko. Biostimulation of HeLa cells by low-intensity visible light II. Stimulation of DNA and RNA synthesis in a wide spectral range. Nuevo Cimento. 1984:309–318.
    17. Baxter GD. Therapeutic Lasers: Theory and Practice. Churchill Livingstone; London, England: 1994. pp. 89–138.
    18. Longo L. Terapia Laser. USES; Firenze, Italy: 1986. p. 9^+0.
    19. Cruanes CJ. Laser Therapy Today. Laser Documentation Centre; Barcelona, Spain: 1984. pp. 95–98.
    20. Zhang Y, Song S, Fong CC, et al. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol. 2003;120:849–857. [PubMed]
    21. Lampl Y. Laser treatment for stroke. Expert Rev Neurother. 2007;7:961–965. [PubMed]
    22. Oron A, Oron U, Chen J, et al. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke. 2006;37:2620–2624. [PubMed]
    23. Zhang RL, Chopp M, Zhang ZG, et al. A rat model of focal embolic cerebral ischemia. Brain Res. 1997;766:83–92. [PubMed]
    24. Shen J, Xie L, Mao X, et al. Neurogenesis after primary intracerebral hemorrhage in adult human brain. J Cereb Blood Flow Metab. 2008;28:1460–1468. [PMC free article] [PubMed]
    25. Detaboada L, Ilic S, Leichliter-Martha S, et al. Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg Med. 2006;38:70–73. [PubMed]
    26. Carnevalli CM, Soares CP, Zangaro RA, et al. Laser light prevents apoptosis in Cho K-1 cell line. J Clin Laser Med Surg. 2003;21:193–196. [PubMed]
    27. Lapchak PA, Salgado KF, Chao CH, et al. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience. 2007;148:907–914. [PubMed]
    28. Lapchak PA, Wei J, Zivin JA. Transcranial infrared laser therapy improves clinical rating scores after embolic strokes in rabbits. Stroke. 2004;35:1985–1988. [PubMed]
    29. Lapchak PA, Han MK, Salgado KF, et al. Safety profile of transcranial near-infrared laser therapy administered in combination with thrombolytic therapy to embolized rabbits. Stroke. 2008;39:3073–3078. [PubMed]
    30. Lapchak PA, De Taboada L. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res. 2009;1306:100–105. [PubMed]
    31. Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38:1843–1849. [PubMed]
    32. Zivin JA, Albers GW, Bornstein N, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40:1359–1364. [PubMed]
    33. Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. Curr Cardiol Rep. 2010;12:29–33. [PMC free article] [PubMed]
    34. Naeser MA, Stiassny-Eder D, Galler V, Hobbs J, Bachman D, Lannin L. Laser acupuncture in the treatment of paralysis in stroke patients: a CT scan lesion site study. Am J Acupuncture. 1995. [November 30, 2010]. pp. 13–28. Available at:
    35. Bard G, Hirschberg GG. Recovery of voluntary motion in upper extremity following hemiplegia. Arch Phys Med Rehabil. 1965;46:567–572. [PubMed]
    36. Sunderland A, Tinson D, Bradley L, et al. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry. 1989;52:1267–1272. [PMC free article] [PubMed]
    37. Naeser MA, Alexander MP, Stiassny-Eder D, et al. Acupuncture in the treatment of paralysis in chronic and acute stroke patients—improvement correlated with specific CT scan lesion sites. Acupunct Electrother Res. 1994;19:227–249. [PubMed]
    38. Naeser MA AM, Stiassny-Eder D, Galler V, Hobbs J, Bachman D. Real versus sham acupuncture in the treatment of paralysis in acute stroke patients: a CT scan lesion site study. J Neurologic Rehab. 1992. [November 30, 2010]. pp. 163–173. Available at:
    39. Naeser MA, Alexander MP, Stiassny-Eder D, Nobles L, Bachman D. Acupuncture in the treatment of hand paresis in chronic and acute stroke patients: Improvement observed in all cases. Clin Rehab. 1994;8:127–141.
    40. Cheng N, Van Hoof H, Bockx E, et al. The effects of electric currents on ATP generation, protein synthesis, and membrane transport of rat skin. Clin Orthop Relat Res. 1982;(171):264–272. [PubMed]
    41. Naeser MA, Wei XB. Laser acupuncture, an introductory textbook for treatment of pain, paralysis, spasticity and other disorders. clinical, research uses of laser acupuncture from around the world. Boston Chinese Medicine. 1994:40.
    42. Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14:602–615. [PubMed]
    43. Hoge CW, McGurk D, Thomas JL, et al. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358:453–463. [PubMed]
    44. Taber KH, Warden DL, Hurley RA. Blast-related traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci. 2006;18:141–145. [PubMed]
    45. Niogi SN, Mukherjee P, Ghajar J, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. Am J Neuroradiol. 2008;29:967–973. [PubMed]
    46. Petrides M. Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Ann N Y Acad Sci. 1995;769:85–96. [PubMed]
    47. Lewin JS, Friedman L, Wu D, et al. Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. J Comput Assist Tomogr. 1996;20:695–701. [PubMed]
    48. Pardo JV, Fox PT, Raichle ME. Localization of a human system for sustained attention by positron emission tomography. Nature. 1991;349:61–64. [PubMed]
    49. Oron A, Oron U, Streeter J, et al. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma. 2007;24:651–656. [PubMed]
    50. Oron U, Yaakobi T, Oron A, et al. Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med. 2001;28:204–211. [PubMed]
    51. Oron U, Yaakobi T, Oron A, et al. Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation. 2001;103:296–301. [PubMed]
    52. Yaakobi T, Shoshany Y, Levkovitz S, et al. Long-term effect of low energy laser irradiation on infarction and reperfusion injury in the rat heart. J Appl Physiol. 2001;90:2411–2419. [PubMed]
    53. Shefer G, Partridge TA, Heslop L, et al. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci. 2002;115:1461–1469. [PubMed]
    54. Avni D, Levkovitz S, Maltz L, et al. Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg. 2005;23:273–277. [PubMed]
    55. Moreira MS, Velasco IT, Ferreira LS, et al. Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J Photochem Photobiol B. 2009;97:145–151. [PubMed]
    56. Wu Q, Huang Y-Y, Dhital S, et al. Hamblin MR, Anders JJ, Waynant RW, editors. Low level laser therapy for traumatic brain injury. Mechanisms for Low-Light Therapy V. Proc SPIE. 2010;7552 Article No. 755206.
    57. Naeser MA, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function post-transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg. 2010 In press. [PMC free article] [PubMed]
    58. Naeser MA, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function post-transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg. 2010 In press. [PMC free article] [PubMed]
    59. Schiffer F, Johnston AL, Ravichandran C, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct. 2009;5:46. [PMC free article] [PubMed]
    60. Wan S, Parrish JA, Anderson RR, et al. Transmittance of nonionizing radiation in human tissues. Photochem Photobiol. 1981;34:679–681. [PubMed]
    61. Verweij BH, Muizelaar JP, Vinas FC, et al. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg. 2000;93:815–820. [PubMed]
    62. Gilmer LK, Roberts KN, Joy K, et al. Early mitochondrial dysfunction after cortical contusion injury. J Neurotrauma. 2009;26:1271–1280. [PMC free article] [PubMed]
    63. Lifshitz J, Sullivan PG, Hovda DA, et al. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion. 2004;4:705–713. [PubMed]
    64. Lapchak PA, De Taboada L. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res. 2010;1306:100–105. [PubMed]
    65. Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45:443–452. [PMC free article] [PubMed]
    66. Sompol P, Xu Y, Ittarat W, et al. NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis. J Mol Neurosci. 2006;29:279–288. [PubMed]
    67. Chen AC-H, Arany PR, Huang Y-Y, et al. Hamblin MR, Anders JJ, Waynant RW, editors. Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. Mechanisms for Low-Light Therapy IV. Proc SPIE. 2009;7165 Article No. 71650B. [PMC free article] [PubMed]
    68. Chen AC-H, Huang Y-Y, Sharma SK, Hamblin MR. Effects of 810-nm laser on murine bone marrow derived dendritic cells. Photomed Laser Surg. 2010 In revision. [PMC free article] [PubMed]
    69. Zhang YH, Takahashi K, Jiang GZ, et al. In vivo production of heat shock protein in mouse peritoneal macrophages by administration of lipopolysaccharide. Infect Immun. 1994;62:4140–4144. [PMC free article] [PubMed]
    70. Frost E. Acupuncture for the comatose patient. Am J Acupuncture. 1976;4:45–48.
    71. Deadman P, Al-Khafaji M. A Manual of Acupuncture. Hove, East Essex, England: Journal of Chinese Medicine Publications. 1998;256:548–560.
    72. Mi XQ, Chen JY, Liang ZJ, et al. In vitro effects of helium-neon laser irradiation on human blood: blood viscosity and deformability of erythrocytes. Photomed Laser Surg. 2004;22:477–482. [PubMed]
    73. Mi XQ, Chen JY, Cen Y, et al. A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro. J Photochem Photobiol B. 2004;74:7–12. [PubMed]
    74. De Scheerder IK, Wang K, Kaul U, et al. Intravascular low-power laser irradiation after coronary stenting: long-term follow-up. Lasers Surg Med. 2001;28:212–215. [PubMed]
    75. Swick D, Jovanovic J. Anterior cingulate cortex and the Stroop task: neuropsychological evidence for topographic specificity. Neuropsychologia. 2002;40:1240–1253. [PubMed]
    76. Moges H, Vasconcelos OM, Campbell WW, et al. Light therapy and supplementary riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg Med. 2009;41:52–59. [PubMed]
    77. Trimmer PA, Schwartz KM, Borland MK, et al. Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol Neurodegener. 2009;4:26. [PMC free article] [PubMed]
    78. Zhang L, Xing D, Zhu D, et al. Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKC activation. Cell Physiol Biochem. 2008;22:215–222. [PubMed]
    79. Michalikova S, Ennaceur A, van Rensburg R, et al. Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol Learn Mem. 2008;89:480–488. [PubMed]
    80. Rochkind S, Barr-Nea L, Bartal A, et al. New methods of treatment of severely injured sciatic nerve and spinal cord. An experimental study. Acta Neurochir Suppl (Wien) 1988;43:91–93. [PubMed]
    81. Byrnes KR, Waynant RW, Ilev IK, et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med. 2005;36:171–185. [PubMed]
    82. Wu X, Dmitriev AE, Cardoso MJ, et al. 810 nm Wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg Med. 2009;41:36–41. [PubMed]
    83. Rochkind S, Leider-Trejo L, Nissan M, et al. Efficacy of 780-nm laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg. 2007;25:137–143. [PubMed]
    84. Rochkind S, Drory V, Alon M, et al. Laser phototherapy (780 nm), a new modality in treatment of long-term incomplete peripheral nerve injury: a randomized double-blind placebo-controlled study. Photomed Laser Surg. 2007;25:436–442. [PubMed]
    85. Barbosa RI, Marcolino AM, de Jesus Guirro RR, et al. Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2010;25:423–430. [PubMed]
    86. Gigo-Benato D, Geuna S, de Castro Rodrigues A, et al. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci. 2004;19:57–65. [PubMed]

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *